Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)

نویسندگان

  • HENRIK FOSSING
  • TIMOTHY G. FERDELMAN
  • PETER BERG
چکیده

Sulfate reduction rates (SRR) and concentrations of SO4 , H2S, pyrite sulfur, total sulfur, CH4, and organic carbon were measured with high depth resolution through the entire length of the SO4 -zone and well into the CH4-zone at two continental slope stations in the eastern South Atlantic (Benguela upwelling area). The sediments were characterized by a high organic carbon content of approx. 7.5% at GeoB 3703 and 3.7% at GeoB 3714. At GeoB 3703 SO4 22 concentrations decreased linearly with depth to about 40 mM at the sulfate-methane transition zone (SMT) at 3.5 m, while at GeoB 3714, SO4 22 remained at sea water concentration in the top 2 m of the sediment and then decreased linearly to about 70 mM at the SMT at 6 m. Direct rate measurements of SRR (SO4 ) showed that the highest SRR occurred within the surface 3–5 cm with peak rates of up to 20 and 7 nmol SO4 22 cm day at GeoB 3703 and GeoB 3714, respectively. SRR decreased quasi-exponentially with depth at GeoB 3703 and the cumulative SRR over the length of the SO4 22 zone resulted in an areal SRR (SRRarea) of 1114–3493 mmol m 22 day (median value: 2221 mmol m day) at GeoB 3703 with more than 80% of the total sulfate reduction proceeding in the top 30 cm sediment. At GeoB 3714 SRR exhibited more scatter with a cumulative SRRarea of 398–1983 mmol m 22 day (median value: 1251 mmol m day) and with .60% of the total sulfate reduction occurring below a depth of 30 cm due partially to a deeply buried zone of sulfate reduction located between 3 and 5 m depths. SRR peaks were also observed in SMT of both cores, ostensibly associated with methane oxidation, but with rates about 10 times lower than at the surface. Modeled SRR balanced both methane oxidation rates and measured SRR within the SMT, but severely underestimated by up to 89% the total SRRarea that were obtained from direct measurements. Modeled and measured SRR were reconciled by including solute transport by irrigation described by a non-local pore water exchange function (a) which had values of up to 0.3 year in the top sediment, and decreased exponentially to zero (i.e., no irrigation) at 2–3 meters (i.e., above SMT). These results suggested that co-existing sulfate reduction processes and linear SO4 -gradients can be maintained by a non-local transport mechanism such as irrigation, by which pore water in tubes or burrows is exchanged with bottom waters by activities of tube-dwelling animals, or some similar physical transport phenomenon (i.e., bubble ebullition). Further support for an irrigation mechanism was found in the observations of open tubes of up to 8 mm (ID) at depths down to 6 m, which also contained fecal pellets, indicating that these tubes were or had been inhabited. Copyright © 2000 Elsevier Science Ltd

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

9. Significance of Anaerobic Methane Oxidation in Methane-rich Sediments Overlying the Blake Ridge Gas Hydrates

A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The δ13C values of dissolved CO2 (ΣCO2) are as 13C-depleted as –37.7‰ PDB (Site 995) at the sulfate-methane interface, reflecting a substan...

متن کامل

Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.

The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages...

متن کامل

Anaerobic methane oxidation in low-organic content methane seep sediments

Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sed...

متن کامل

Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments

Globally, the methane (CH4) efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently ine...

متن کامل

Methane dynamics in Santa Barbara Basin (USA) sediments as examined with a reaction-transport model

Here we describe a new reaction-transport model that quantitatively examines δ13C profiles of porewater methane and dissolved inorganic carbon (DIC) (δCCH4 and δCDIC) in the anoxic sediments of the Santa Barbara Basin (California Borderland region). Best-fit solutions of the model to these data suggest that CO2 reduction is the predominant form of methanogenesis in these sediments. These soluti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000